
MADS Overview

Serban Georgescu, Okuda Laboratory

November 29, 2006

1 Introduction

1.1 From common models and patterns to a new simulation framework

In order to design an useful, e�cient and coherent simulation framework, we analyzed the
previously selected models and simulations in which these models were used. We discovered
several similarities and common simulation design patterns. The signi�cant �ndings and
the ideas that followed from them are the following:

• most simulations combine data and models from various sources → we designed a
distributed simulation infrastructure in which simulation modules are combined in
the main simulation

• for a realistic simulation, quite a large number of such modules are needed → we
designed a service-oriented centralized data/model management system

• data acquisition takes a lot of time → the management system was designed so that
previously entered data is available to all framework users, independent of location

• almost all aspects considered in the simulation and the result itself vary with time
and this evolution is what drives adoption → we considered the base element of
the simulation to be a service function, a special kind of time series; all simulation
modules are represented by these service functions, which can be created in the
simulation or received from remote modules (hence the name service)

• a single-product market with a (large) group of consumers and sometimes a (small)
group of suppliers is usually considered; interaction between consumers and between
suppliers is sometimes taken into account; interaction networks are usually the stan-
dard ones (grids, small world networks, random graphs)→ we considered a standard
market composed of one product in a number of variants, characterized as attributes
represented as service functions, a network of consumers and a network of suppliers;
we pre-de�ned all standard network topologies.

• plotting is always required → we added integrated plotting capabilities

1.2 From Service Oriented Architecture to Distributed Simulation

The Service Oriented Architecture (SOA) paradigm assumes that various services, provided
by loosely-connected systems, are combined to make a complete application. In order to
function together properly, the services need a message parsing system and some way of
advertising their functions and usage.

1



Usually, the message parsing system is provided by the SOAP [6] protocol, which ex-
changes XML-based messages over a computer network, normally using HTTP. In this
way, SOAP provides a basic messaging framework that more abstract layers can build on.
In conjunction with SOAP, the Web Services Description Language (WSDL) [7] is used
as a standard way of describing web services. These services can be searched and found
using UDDI (Universal Description, Discovery, and Integration) [5] which provides white
and yellow pages services.
Another widely used implementation of SOA is the CORBA (Common Object Request

Broker Architecture) [13] technology. Generally, CORBA acts as a wrapper for an object
written in some language by providing it with a IDL (Interface De�nition Language) inter-
face. In this way, any remote system, probably using another programming language, can
use the received object. CORBA does not use SOAP, but a di�erent message parsing sys-
tem, using binary data instead of XML. CORBA is designed to handle a very big number
of requests and provides load balancing and various tools for these situations.
At a more abstract layer, making use of SOAP, CORBA and other similar technologies,

we can �nd infrastructures for building powerful large-scale distributed systems. JINI [4]
is such a framework, which is able to link various hardware and software services. It is
usually used for mission-critical system (e.g. Search & Rescue operations) where di�erent
elements need to cooperate seamlessly in order for the whole system to work.
Regardless the method used or implementation type, all these systems have two main

elements in common:

1. Provide means for SOA computation

2. Are very general and complex, so that they can be used in all kinds of applications

While using a service-oriented approach is indeed very useful in a wide range of �elds,
including simulation and in particular technological simulation, their generality and com-
plexity makes these systems di�cult to use in small scale simulations. This complexity
is well justi�ed by the wide range of applications that these technologies make possible.
For example CORBA objects are very ofter behind a whole range of web application, like
on-line shopping sites. But developing a CORBA application is not an easy task, and there
is not so much sense in using such a technology for simple simulation.
Because of this, having just simulation in mind, more specialized service-oriented system

have been developed. This is what is usually called Distributed Simulation (DS). Although
more specialized than the �rst systems, these are also too complex for most small/medium
size simulations. One example is the D'Agent system [3], designed with the idea of using
remote and dynamical data-sources. Although it was successfully tested on Search &
Rescue mission scenarios, it is too laborious to construct all the parts needed for enabling
a distributed simulation. Another example is a web-based federated simulation system
[8], built using JINI, whose main feature is the possibility of de�ning in a very �exible
way access rights and access lists regarding objects and resources. But these features also
increase the work required to design an object and to create a simulation, making the
system not so e�cient for a small/medium scale simulation.
It seems there is no distributed system simple enough so that any researcher, with a

moderate programming skill, can easily use. This fact can be also inferred from the lack
of mention to such systems in papers regarding, for example, technology di�usion, �eld
where various numerical simulations are a common thing.
Because, as mentioned before, in the �eld of technology di�usion numerical simulations

are an indispensable tool, having a fairly simple and very easy to use system would save

2



a lot of time. This system need and should not be so general as to enable the creation of
web application, not even to be able to do real-time simulation. Various load balancing
and network tools are also not necessary. Also, security and fault tolerance are not so
important, as it is not to be used in mission-critical simulations. What is really important
here is the simplicity of using and maintaining it and the advantages it brings for the
simulation process. The proposed framework aims to be such a system.

1.3 Naming conventions

In this thesis we are proposing a new di�usion simulation framework. This framework will
be referred to as MADS, which stands for Multi-Agent Di�usion Simulation framework.
In the course of this thesis we will be referring to agents. This word will be used here

with two meanings, depending on the context. When speaking about MADS infrastruc-
ture, agent represents autonomous programs that communicate and provide services to
the simulation. When speaking about the di�usion process, agents will represents the ac-
tors (households, groups of similar households) that participate (decide) in the process of
adoption.

2 The MADS Infrastructure

2.1 Introducing the Service Function

A general characteristic of economical and social simulation (but not limited to these �elds)
is the fact that usually the result of the simulation is a time series, a function of time. This
represents the evolution through time of some variable under study, for example the price
of oil or of some other asset, the number of adopters of fuel cell vehicles, etc. Various
variables, in order to be computed, need several other parameters, so formally they are
not functions of only time, but one can make a distinction between time and the rest of
parameters, so that for �xed parameter values the variable becomes only a function of
time. Another important characteristic is the fact that these �other� parameters are not
constants, but themselves functions of time. The lifetime cost of a car depends, among
other things, on the cost of gasoline and the fuel consumption. One can take these as being
constants, but that would be a big mistake as usually the evolution of these parameters is
what drives the process of adoption in the �rst place.
The central idea of MADS is to have such functions of time in the core of the system. This

means that everything in the simulation will be a special kind of function, called a service

function. There are no constants, just functions that have constant value through time.
These functions will be called service functions because, while from a mathematical point
of view they represent a function of time, from the simulation's point of view they represent
various services that are provided (usually) by an external source and used internally in
the simulation. They are services in that they provide the simulation with the service of
computing something, in particular a time series. For example, a service function may
compute the price of oil, under some conditions given as parameters. In this context, the
functions provide the simulation with the service of computing somehow, not important
from the point of view of that particular simulation, the cost of oil at various points in
time.

3



2.2 The bene�ts of a Multi-Agent infrastructure

Dividing a simulation into modules is a very e�cient practice but having various modules
that make various computations is not enough. In the �eld of economical and social
simulation, a large amount of information and models, therefore simulation modules, are
required for a more realistic simulation. For example, in our simulation of fuel cell vehicle
di�usion, more than 50 such simulation parts had to be used in order to account for the
most important aspects of the adoption process. Therefore one needs an e�cient way of
managing and incorporating these parts into the simulation.
The easiest way would be to just copy-paste the code from one simulation to another, but

this would make simulations big and hard to understand and the modules themselves hard
to �nd and to maintain. Also, the usage of the code would be restricted to the designer of
the functions, the only one that can understand that code (and for how long?).
Another, cleaner solution, would be to put them inside packages (e.g. Java packages).

From the simulation's point of view it would be OK, but, as functions get more and more
numerous, they would become hard to �nd. How much information can one store in a
�le-name? To share the code, the designer would have to share the whole or portions of
the function library, accompanied by documentation. After sharing the code, it has no
longer any control over its usage. Data and model updates would also be a problem as
users will have to verify every time that the package contains the most recent data. Also,
modules contributed by other researchers would be di�cult to add as these would have to
be sent to a central location and distributed during the next library release. This is a very
lengthy and time-consuming process.
The way proposed here is to share the code using a di�erent kind of function library,

one that uses agents, autonomous programs that communicate and provide service to the
simulation via service functions. Agents are connected and registered to a server, so anyone
connecting to the server can have access to their services. Although agents are required
to be registered on the same server, they can actually run anywhere, as long as there is a
way of accessing the server. Thus, every researcher can easily add his own modules to the
systems by adding or just registering them to the central server. The rest of the users will
have access to the added modules instantaneously.
The advantages of this agent based approach are:

• the simulation modules (service functions) can be very easily found

• documentation is very easy to obtain, being displayed when the agent is found

• there is no need of library sharing

• as soon as a service function is added or updated, all users have access to the new
function or the new version

• the creator of a particular service function has full control regarding its usage, as it
can always remove a particular function by stopping the corresponding agent

• data privacy is also taken care of as the agent does not contain source code, the only
visible things being the results

2.3 The infrastructure

2.3.1 Implementation

We chose to implement MADS in the JAVA programming language (version 1.5). There
are several reasons for this choice:

4



• portability: there is a version of JAVA running on all major operating systems (Win-
dows, Unix/Linux, Mac OS, Solaris, etc.) therefore MADS can be used simultane-
ously on a wide range of platforms

• security: providing services in the form of executable code (the service functions are
sent to the application in binary format) represents a potential security risk if the
programming language is not prepared to deal with this kind of situations; being
created exactly for this purpose, JAVA is probably the most secure programming
language there is

• reliability: JAVA is much less prone to error in comparison with other program-
ming languages like C because of the Garbage Collector and Exception Handling
mechanism

• productivity: thanks to the large amount of libraries and tools and to the presence
of the Garbage Collector, developing an application in JAVA is roughly two times
faster than it would be to develop the same application in C++

• speed: combined with the JIT (Just In Time) Compiler, JAVA is almost as fast as C

2.3.2 Communication infrastructure

The next step up into de implementation hierarchy is the choosing of the communication
infrastructure. This will handle the communication between the service providing agents
and the main simulation. For this task, we selected the JADE ([11]) framework (Fig. 1).
JADE is one the best distributed agent simulation systems. It provides agent-to-agent

communication transparent of the agent's location and a powerful agent life-cycle man-
agement system. Communication is done using FIPA (Foundation for Intelligent Physical
Agents) standards. JADE agents reside into one or more layers which can be on a single
machine or distributed. Agents can be created in a layer, deleted, or moved from a layer
to another. JADE makes sure the agent management process and the communication are
independent of the location of the layers, the operating system the layers reside in or the
type of connectivity between the layers. A layer can be created in any place in which JAVA
can be run. Thanks to JAVA's portability, not only layers can be created on almost any
operating system but also on portable devices as PDAs or mobile phones. Layers can also
be created inside a JAVA Applet running inside a web browser, opening the possibility
of running code (via agents) on a remote computer, inside the web browser or migrating
agents from a central repository to a user's computer (via the web browser) and back.

5



Figure 1: JADE Layout. On the lowest level there we �nd a wide range of platforms that
support a JAVA Virtual Machine. Inside the virtual machines, independent of
the physical system, JADE containers can be created. In each container JADE
agents can be run.

2.3.3 MADS Infrastructure

Building on the JADE framework, we implement the MADS multi-agent infrastructure for
data/model management. We thus provide MADS with all advantages that come from
JAVA and JADE. In order to use JADE as communication infrastructure, all parties that
create the simulation must be JADE agents. We therefore de�ne two basic types of agents
derived from JADE agents and corresponding to the two parties involved in creating the
simulation: a simulation agent type (referred to as simulation agent) which is responsible for
managing the main simulation (on the user's computer) and a service agent type (referred
to as service agent) responsible for managing the remote service function providing agents.
In a typical simulation (Fig. 2), one simulation agent will request and receive services

from a number of service agents. Each service agent has an unique name (the naming
convention is global, not local to each container). A simulation agent will send a standard
service request, using the name of the agent. The request will be forwarded to the service
agent, independent of the agent's location, which will answer by sending the service func-
tion. The communication mechanism is asynchronous; the main simulation will wait for
a certain time for the answer to arrive and will generate a timeout error if no answer is
received.

2.3.4 Finding and requesting an agent

Agent management is a very important task. We transform the agent server into a vir-
tual simulation module database by providing each agent with extensive description of its
functionality and by creating a web interface for searching and browsing through these
descriptions. A service agent has to provide the following information:

6



Figure 2: JADE Infrastructure layout

• name (globally unique)

• description; a comprehensive description of the agent's functionality

• time range; the years between which the service is valid (e.g. a forecast for gasoline
price might be valid between 2000 and 2030)

• list of parameters; zero or more parameters required for the agent in order to produce
the requested data

• references; one or more references to literature related to the data or theory of the
provided service

Providing this information is not optional but a requirement of the system. Using such
strong policy, the framework makes sure the services are well documented so that searching
the database will give valid results and every user knows how to use the service correctly.
Searching and browsing the agent database is done via a web interface (Fig. 3). In fact,

the interface itself is a special agent that runs inside the user's web browser, in a JAVA
applet. The interface broadcasts a query message to all agents which answer with the
information described above.

After browsing the database and locating the necessary agents, the user will call the
agent using its name (displayed in the blue frame and underlined at the beginning of the
description). Obtaining a service function from a service agent inside the main simulation
is very easy and requires just a line of code. For the agent displayed above, the user would
have to do something like the following:

where the name of the service agent is written between columns, in blue color, and all
parameters, exactly as speci�ed in the agent description, are given between brackets.
Usually, service agents validate the data using the rules speci�ed in the description. If,

for example, only three parameters or a negative price would be given, an error message
would return instead of the result.

7



Figure 3: MADS Agent Browser

3 Operations on Service Functions

Service functions are in the core of the MADS framework. All time series received from
simulations modules have the form of service functions and so are all parameters and
data used throughout the simulation. For this reason MADS contains an extensive list of
operations with and on service functions.

3.1 Domain of de�nition

As service functions represent predictions, trends, data and so on, a time interval of validity
must be considered. In MADS, for every service function we de�ne the base and range.
The base represents the starting year from which the service function is valid. For example,
for a gas price forecast computed for from year 2000 to year 2030, base would equal 2000.
The range represents the number of years, starting from the base, from which the service
function stays valid. In the previous example, the range would be 30.
For some service functions, time does not matter (e.g. constant functions). For these,

the base defaults to 0 and the range defaults to 10000, which is also the maximum possible
range. As time is usually counted in years, the value of 10000 is more than su�cient.

3.2 Atrithmetics

Service function artihmetics is included in MADS. We de�ne an arithmetical operation
between two service functions sf1 and sf2 as an arithmetical operation made on every
pair (sf1(t), sf2(t)) for every point in time t in which both functions are de�ned. If the
domains of de�nition of the functions involved in the operations are not the same, the
result service function's domain will be the intersection. This insures that operations on

8



service functions are restricted to the time interval where all involved time series are valid.
As the result of an arithmetical operation is also a service function, multiple arithmetical
operation can be combined (chained) using the same functions.
The following arithmetical operations are included: addition, subtraction, multiplication

and division.

In Fig. 4, a sample addition between two service functions is presented. The �rst service
function represents the forecast for gasoline price on 2000 - 2030 while the second represents
a potential tax on pollution. Both service functions are received from service providing
agents. We combine them inside the simulation by on one line of code and obtain the
taxed gasoline price for 2000 - 2030.

Figure 4: Sample service function addition

3.3 Other operations

The points and values where the service function reaches its maximum and minimum values
can be found using the min and max functions. The mean value on the whole domain is
given by the function mean.

Usually, some elements from a simulation are generated according to some distribution
function. Example of such elements are consumer characteristics, �rm strategies, connec-
tions from interaction topologies and so on. In these cases, a simulation has to be run for
a number of times and the results of each simulation have to be averaged. As will be later
presented, the result of a simulation is itself a service function therefore this averaging of
results reduces to an averaging of service functions. We have implemented this using the
AverageServiceFunction class, which de�nes a service function having at every time step
the average value of all service functions given as parameters. The usage is the following:

3.4 Writing to �le

Sometimes service functions need to be saved for later reference, plotting in a specialized
software, further processing, etc. All information stored inside a service function can be
saved to a text �le by simply calling a saveToFile function.

9



3.5 Plotting

In almost every kind of simulation plotting is necessary. This might be to check the input
data, verify the data received from service agents, test the evolution of the system at
various points either to see whether it is evolving as it is supposed to or just to get some
insight in the process at it evolves, plot the �nal results, etc. Exporting data and plotting
it in an external software would be a great waste of time as this operation is performed
extremely often. We therefore incorporated simple service function plotting into MADS.
As almost everything in a MADS simulation is a service function, almost everything can
be directly plotted. A plot resulting from this procedure will look like the one from Fig. 5.

Figure 5: Sample service function plot for a co-generation system adoption simulation

3.6 Creating service functions

Until now we showed that service functions can be obtained by one of the following ways:

• received from a remote agent using getRemoteServiceFunction

• obtained as a result of an arithmetical operation

• obtained as a result of an averaging procedure via AverageServiceFunction

In the following, we will show how these service functions can be created inside a simulation.
The simplest way of creating a service function is by directly instantiating the base

ServiceFunction class. One will obtain a new service function with a speci�ed time domain
(and the default one if none is speci�ed) and having all values equal to zero. Values can
then be added for each point in time using a set function. One might want to create such
a service function to perform some custom operation on data, or simply to store data in
some form than can be easily saved and plotted.
Another more practical way to create a service function is by using a prede�ned function

type. MADS provides the following service function patterns: constant service function,

10



linear service function, logistic service function, gaussian service function and discount

service function.

A constant service function will probably be the most used service function pattern in a
simulation. As in MADS all data and parameters must be given in service function format,
constants will be represented by service functions that have no time domain restrictions
and whose value is the same at any point in time.
The second in order of usage in a di�usion simulation is the logistic service function.

This is because the progress (development) of some technology or di�usion process has
generally the form of a logistic (sigmoid) function. A logistic function has the following
formula:

f(x) = A2 +
A1 − A2

1 + e(x−x0)/dx

where A1 is the initial value, A2 is the �nal value, x0 is the center (the point of in�ection)
and dx represents the width.
As mentioned before, logistic functions often appear in the context of technological

evolution. Providing such a service function template becomes very handy in di�usion
simulation. One usually �nds data or forecasts regarding the evolution of some technology,
�ts the data with a logistic function and obtains the desired coe�cients. As an example,
the evolution of the time needed by a generic FCV to accelerated from 0 to 100km/h, from
the year 2000 to 2030, can be written with a single line of code:

In some cases, a gaussian function �ts the data better than a logistic function. For these
cases, a gaussian service function has been de�ned. A gaussian function can be described
by the following formula:

f(x) = y0 +
A

w ·
√

π
2

e−
2(x−x0)2

w2

where y0 represents the baseline o�setn, A is the total area under the curve from the
baseline, x0 is the mean and w/2 represents the standard deviation.
An example where a gaussian function �ts the data better than a logistic function is

in the case of the weight of hybrid and gasoline vehicles. The evolution of the weight of
a generic hybrid vehicle, from 2000 to 2030, can be compressed into the following line of
code:

Another useful function de�ned in MADS is the linear function, with the well known
formula

f(x) = ax + b

The last service function pattern is the more special discount service function, often
used in economic simulation. This function represents the exponential decrease in time of
a value of some asset due to in�ation or risk aversion. The notion of discount represents the
fact that a certain amount of money is more valuable now than it would be in future both
because of an uncertainty regarding the future and because of the possibility of investing
the money, if possessed now, and making a pro�t. Having an asset or an amount of money
whose value in time is represented by a service function sf, the real (discounted) value will

11



be easily computed in MADS by simply multiplying sf with a discount service function.
The formula for a discount service function is the following:

d(x) = e−rx

where r represents the discount rate (usually 0.05, which represents a decrease in value by
5% every year). One can apply the discounting operation in a single line by chaining the
multiplication and service function creation, as in the following piece of code:

4 Networks

In the previous chapter we argued that social interactions are important and should be
taken into account in di�usion simulation. For the interaction models, support for networks
has been included in the framework. The MADS graph handling infrastructure is provided
by JUNG ([1]).

4.1 Service Network Functions

To provide maximum �exibility, networks are de�ned in the form of service network func-

tions, in analogy to service functions. This is because we consider networks to be a special
kind of service functions whose value at any time step is represented by a network topol-
ogy, a graph. Network service functions can be created in the simulation, usually using
generators, or received from remote agents. Although usually topologies are considered to
remain unchanged with time, in some particular cases the evolution of the network might
prove important. This is the reason why we chose to de�ne the intersection topologies as
graph time series as opposed to simple graphs.
As in the case of service functions, the value at a particular time t (in this case a graph)

can be obtained using a get function.
There is no arithmetics associated with service network functions as in this case it does

not make sense.

4.2 Creating service network functions

Although service network functions can be directly created by instantiating the ServiceNet-
workFunction class and the network handcrafted by adding vertices and edges using the
tools provided by JUNG, most simulations restrict themselves to using standard, well
known network topologies. MADS provides network generators for all standard topolo-
gies: grids, small world networks, random graphs and scale-free random graphs.

4.2.1 Grids

The most often used interaction topology, the 2D grid, is generated by the TwoDimLattice-

Generator generator. A service network function can thus be created using the following
(chained) syntax:

where N represents the size of the grid and the second parameter speci�es if the lattice
is toroidal or not (usually is).

12



Figure 6: 2D toroidal grid with size 4 (16 vertices)

4.2.2 Small world networks, 1D latices and random graphs

Small world networks[12] are considered to be the best representation for the the relations
in a society (e.g. the small world phenomenon, six degrees of freedom). Small world net-
works bridge the gap between networks with high clustering (e.g. grids) and networks with
small average path length (e.g. random graphs). A simple and intuitive way of creating
such networks is by starting from a grid topology and then making a few random shortcuts.
This can be also seen as an analogy with the fact that there is dense connectivity between
a person and his/her entourage but there is also a weak connectivity between very di�er-
ent (very distant) entourages through some common acquaintances. While decisions are
usually strongly in�uenced by the ones of the entourage, information travels fast between
entourages via these weak connections.

Figure 7: 1D small world network, as in Watts. p represents the shortcut probability

In MADS, two di�erent small world generators, one for one dimensional networks using
the Watts beta function ([12]) and another for the two dimensional version, using Klein-
berg's algorithm ([9]) are provided. Other generation methods are also possible [10]. Their
syntax are the following:

13



where N represents the number of vertices, p the shortcut creation probability, deg the
degree of the vertices, M represents the size of the 2D lattice and d represents a clustering
coe�cient.
It should be noted that by setting the shortcut probability p to 0, a 1D toroidal lattice

will be obtained. Also, if p is set to 1, the result will be a random graph. The values of
p for which a small world network is obtained are in the range [0.01, 0.1]. This transition
lattice → small world network → random graph while varying the parameter p from 0 to
1 will prove very useful for the sensitivity analysis.

4.2.3 Scale-free random graphs

Scale free networks represent networks in which the probability of a new connection from a
source node to a destination node is not uniform, but proportional to the number of nodes
already connected to the source node. Such networks are centered around �hubs� having
a very large number of connections. Samples of scale free networks are the World Wide
Web and any kind of networks that involve preferential attachment or strong in�uence by
central individuals.

Figure 8: Di�erence between a random graph and a scale-free random graph

In MADS, scale-free random graphs are generated with the most commonly used Barabasi-
Albert algorithm ([2]) using the following syntax:

4.3 Plotting

Plotting was implemented also in the case of service network functions. Because the type
of information these objects carry (graphs and not simple numbers) two types of plots were
implemented. While one is for visualizing the graph associated with a particular point in
time, the other is for viewing, step by step, the evolution of the states associated with the
vertices for the whole simulation.
The �rst type of plot can be created by simply calling the plot routine associated with

the service network function. By default, only the graph structure will be plotted. If the

14



states associated with the vertices are also necessary, a states map that links the vertices
with the states must be provided (such a map can be received from the object holding the
simulation results, which will be presented in the next sections).
Sample plots obtained by both methods are shown in Fig. 9.

Figure 9: Sample plots for a 2D grid. In the left side, just the connectivity is shown. In
the right side, the state information can also be observed.

The second type of plotting can be accessed from the result �le returned after the
simulation has ended (NetworkSimulationResult class). A sample plot created this way
can be seen in Fig. 10. At the bottom of the plot navigation buttons and a box displaying
the current time step can be seen. As the user goes forward in time, the evolution of the
system can be clearly seen.

15



Figure 10: Sample plot

5 Simulations

This section shows how simulations can actually be done in MADS. There are three basic
simulation types: disconnected, interaction-based and complex-interaction-based. Although
all simulations can be implemented as complex-interaction-based, we preferred to keep
things simple where possible.
The disconnected type deals with agents that do not interact directly nor indirectly. This

particular feature makes the simulation very simple to design, consisting only of service
function arithmetics.
In interaction-based simulations, simple interaction between agents is considered but the

supply side is not taken into account. As it deals with interactions, it has to be done in
an iterative way.
Complex-interaction-based simulations are the most general kind, including both direct

and indirect interactions between agents and a supply side.

5.1 Disconnected simulations

Disconnected simulations include the rank model, usually used for reference cases. In
a disconnected simulation, a perfectly-rational and informed pro�t-maximizing consumer
chooses to adopt a new technology, if pro�table, at exactly the time when the pro�t is
greater. As there is no interaction between agents, this type of simulations cannot be
considered multi-agent.

16



5.1.1 Usage

In MADS, a disconnected simulation can be implemented in four steps:

1. �nd necessary data for the product's characteristics and encapsulate it into service
agents

2. call the data in the form of service functions

3. do arithmetics with service functions to arrive at the pro�t

4. �nd the time when the pro�t has the maximum value; this is the adoption time

5.2 Social interaction simulations

Social interaction simulations include statistical mechanics inspired models and all other
models which assume only demand side and interaction between agents. Thus, they are
multi-agent simulations. A graphical representation is shown in Fig. 11.

Figure 11: Social interaction simulation layout

In such simulations, agents (consumers) are considered to have characteristics and states.
By agent characteristics we understand all �personal� attributes that in�uence an agent's
process of selection. These attributes change with time, so we express them as service
functions. An agent also has a state, representing the choice the agent made. The choice
is considered to be an integer number. For example, if the agent has to decide between a
gasoline vehicle, a hybrid and an FCV, a 0-state might denote the current possession of a
gasoline vehicle, a 1-state the possession of a hybrid and a 2-state the possession of a FCV.
To decide who interacts with whom, a network topology must be speci�ed. This is done

by providing the simulation with a network service function.
A state represents the result of a decision process, of applying a decision strategy. In

MADS, the decision process associated with an agent is encapsulated into a strategy object.
This object receives from the simulation data regarding the agent's current state, state and
characteristics of the neighbors and so on.
When and in which order agents get to decide is speci�ed in a run regime. Three run

regimes have been implemented:

17



• runRandomized - execute the decision procedure for a speci�ed number of agents,
chosen randomly

• runSequentialSweep - execute the decision procedure for all agents, in sequential order

• runRandomSweep - execute the decision procedure for all agents, in random order

After the simulation is run, results are stored in a networkSimulationResult structure. This
object can perform the following functions:

• return a service function representing the evolution of a state, from the start time to
the end time of the simulation; the evolution is given as the percent of agents being
in the speci�ed state at each point in time

• plot the graph of the system at a particular time step

• plot the entire evolution of the system

5.2.1 Usage

To implement a social interaction simulation in MADS, one must use the following steps:

1. �nd a model for the consumer (relevant characteristics that a�ect decision)

2. �nd necessary data for the product's characteristics and encapsulate it into service
agents

3. call the data and set the consumers' characteristics

4. decide the simulation time range

5. set the initial conditions

6. set the interaction network

7. run the simulation

8. extract the results

5.3 Complex interaction simulations

Complex interaction simulations must be used in the cases where both demand and sup-
ply have to be considered. This type of simulation will be used for our FCV di�usion
simulation. A complex interaction simulation contains the following elements:

• a product

• a network of consumers

• a network of suppliers

• an automated market agent to handle the trading between consumers and suppliers

• a bank for loans, in the cases where complex supplier models are employed (e.g. the
evolutionary supplier presented in Section ??)

18



A complex interaction simulation is divided in trading cycles, one each year. In each
trading cycle, suppliers make o�ers and consumers evaluate and buy. In order to avoid
using inventories, it is considered that production takes place on-demand, only after all
consumers have ordered. A trading cycle has the following steps (Fig. 12):

1. suppliers post o�ers to the market agent for the product, containing the characteris-
tics and price

2. consumers get all the o�ers from the market

3. consumers analyze the o�ers, choose the ones that are acceptable and post them to
the market agent in the order of preference

4. the market agent does the matching (chooses consumers in random orders and, if
possible, matches their �rst preferences with the corresponding o�er; if this is not
possible further rounds are conducted, where lower level options try to be satis�ed)

5. the matched orders arrive to the suppliers

6. if something was bought then what was bought arrives to the consumers

Figure 12: A trading cycle

A trading cycle is automatically done my MADS, provided a collection of consumers and
a collection of suppliers. Depending of the purpose of the simulation, various models for
consumers and suppliers can be used. All the actions from the steps 1 to 7 are automatically
done by MADS, but there are still functions that have to be implemented by the user.
For the consumer, the user has to de�ne an utility evaluator which given a product (which

includes all characteristics relevant for the decision, in the form of service functions) and
considering the consumer's preferences (included in the consumer's characteristics, also as
service functions) will return a real number. The system will then rank the o�ers received
from suppliers according to this number and post orders to suppliers.
For the supplier, the user has to devise a way in which the supplier decides the price

of the product and the quantity made available, for each year. In the case of the virtual
supplier (Section ??), the quantity will be in�nity and the price will be given as a service
function. In the case of the simple adaptive supplier (Section ??) the price will also be given

19



as a service function but the quantity will be decided according to the number of o�ers
received in the previous year. Finally, in the case of the evolutionary supplier (Section ??),
both price and quantity will be internally computed following a rather complex algorithm.

5.3.1 Usage

To implement a complex interaction simulation in MADS, one must use the following steps:

1. De�ne the product

2. Find a utility function for the consumer

3. Find a model for the supplier

4. Find necessary data to be used as parameters both inside the consumer's utility
function and inside the supplier's model and encapsulate it into service agents

5. Decide the simulation time range

6. Set the initial conditions

7. Set the interaction network

8. Run the simulation

9. Extract the results

References

[1] Java universal network/graph framework.

[2] A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286:509, 1999.

[3] Robert S. Gray, George Cybenko, David Kotz, Ronald A. Peterson, and Daniela
Rus. D'Agents: Applications and performance of a mobile-agent system.
Software� Practice and Experience, 32(6):543�573, 2002.

[4] http://www.jini.org/. Jini.

[5] http://www.uddi.org/. Universal description, discovery, and integration (uddi).

[6] http://www.w3.org/TR/soap/. Simple object access protocol (soap).

[7] http://www.w3.org/TR/wsdl. Web service de�nition language (wsdl).

[8] Xueqin Huang and John A. Miller. Building a web-based federated simulation
system with jini and xml. In 34th Annual Simulation Symposium (SS01), 2001.

[9] Jon M. Kleinberg. Navigation in a small world. Nature, 406:845, 2000.

[10] M. E. J. Newman. Models of the small world. Journal of Statistical Physics,
101:819�841, 2000.

[11] TILAB. Jade (java agent development frameowk). 1999.

[12] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of 'small-world'
networks. Letters to Nature, 393:440�442, 1998.

[13] www.corba.org. The common object request broker architecture (corba).

20


